

CotQuest User's Guide

For CotQuestG and CotQuestU Program Versions 1.0, August 2008

Philippe Chouvarine¹, Daniel G. Peterson¹, and John Bunge²

¹Mississippi Genome Exploration Laboratory (<u>www.mgel.msstate.edu</u>), Department of Plant & Soil Sciences, Life Sciences and Biotechnology Institute, and Institute of Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA

²Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA

Table of Contents

Overview of CotQuest	
The Nature of Cot Data	1
CotQuestG	
Download and Setup	3
User Interface	3
Creating a Data File	4
Analyzing a Dataset	5
Outlier Detection	8
CotQuestU	
Download and Setup	10
Directory and File List	11
Data Input Format	12
Required User Specifications	12
Running the Cot Analysis Programs	13
Outlier Detection	13

Overview of CotQuest

CotQuest is a suite of programs designed for automated nonlinear regression analysis of DNA reassociation kinetics (i.e., Cot) data. It consists of several scripts that, when used in association with the statistical software package SAS[®] (<u>www.sas.com</u>), provide users with a powerful, efficient, and statistically robust means of analyzing their Cot data. The purpose, utility, and underlying logic of CotQuest are detailed in the article "*CotQuest: Improved algorithm and software for nonlinear regression analysis of DNA reassociation kinetics data*" by Bunge, Chouvarine, and Peterson (manuscript submitted). This manual does not duplicate the content of that paper but rather provides information to assist readers in installation and operation of CotQuest.

CotQuest is packaged in two formats:

(1) CotQuestG comes with a graphical user interface (GUI) that *guides* users through the Cot analysis process. In short, the GUI *asks* users to answer a few relevant questions about their data and their research goals. This information is used by CotQuestG to produce customized SAS scripts which the GUI loads into the SAS program. With one click of the mouse, the customized CotQuestG SAS code will be used by SAS to automatically generate a summary results page through which one can access Cot curves, comparative model statistics/graphs, *etc.* CotQuestG requires Microsoft Windows with .NET Framework 2.0 (or higher), which is included in Windows XP (with current updates) and Windows Vista or can be downloaded from the Microsoft website (<u>www.microsoft.com</u> or more specifically, <u>click here</u>).

(2) CotQuestU, unlike CotQuestG, can be used with any SAS-compatible operating system (Windows, Macintosh, Linux, and UNIX). The operating system flexibility of CotQuestU comes at a slight cost with regard to automation as users must make changes in the CotQuestU SAS files without the aid of a GUI. However, this user's manual explains in detail how to make these minor script changes. The output files produced through use of CotQuestU are identical to those generated using CotQuestG.

The Nature of Cot Data

A schematic diagram of a Cot experiment is shown in Figure 1. The data resulting from such an experiment consists of "Cot points." Each Cot point consists of a pair of x and y values where x = Cot and y = fraction single-stranded DNA. The required dataset consists of *n* Cot points $(x_1,y_1),...,(x_n,y_n)$, where typically $n \sim 10^1 - 10^2$, although denser experiments with larger sample sizes are possible. The main program fits a particular family of nonlinear curves to such a dataset. For each member of the family, the program returns various quantitative and graphical data analyses and diagnostics which help the user identify an optimal member of the family as the preferred model. If desired, a second program can be used to examine the data for outliers (relative to the given family of models). This program "nominates" (or identifies) outliers, which may then be deleted; the main program is then re-run on the reduced (outlier-deleted) dataset.

Fig. 1. Overview of Steps Involved in Cot Analysis Using Hydroxyapatite (HAP) Chromatography. (A) DNA from a particular source is sheared into 450 bp fragments and aliquots are dissolved in 0.03, 0.12, or 0.5 M sodium phosphate buffer (SPB) and sealed into glass or plastic tubes. (B) One tube is (C) placed in boiling water to denature DNA duplexes, and then transferred (D) into a water bath set at a temperature 25°C below the melting temperature for genomic DNA in that particular buffer (determined previously). Renaturation is allowed to proceed to a specific Cot value (see text for definition). (E) Once the sample has reached the desired Cot, it is quickly diluted in a 100-fold excess of 0.03 M SPB and loaded onto a HAP column equilibrated with 0.03 M SPB. At this buffer concentration all DNA binds to the HAP. (F) 0.12 M SPB is added causing singlestranded DNA (ssDNA) to elute. (G) 0.50 M SPB is added to the column to elute double-stranded DNA (dsDNA). (H) The volumes and absorbance values of the ssDNA eluant and the dsDNA eluant are used to determine the fraction of ssDNA for the Cot value (Peterson et al., 1998). (I) Steps B-H are repeated for all the DNA samples with each sample being renatured to a different Cot value. The fraction of ssDNA for each sample is plotted against the logarithm of its Cot value to yield a Cot point, and ultimately a graph of Cot points ranging from essentially no renaturation to nearly complete renaturation is prepared. Nonlinear regression analysis, typically performed using a computer program, is used to generate a best-fit Cot curve for the data. (J) If the DNA source used in step A is a prokaryotic, viral, or organellar genome, the resulting Cot curve will exhibit a shape approximating a single second-order kinetics reaction (see text for details). In fitting the curve, the Cot analysis program will generate the reassociation constant k (and/or the Cot_{2}), the relative fraction f of the genome encompassed in the curve, and the genome's kinetic complexity (KnCx). (K) If the starting DNA is from a eukaryotic genome or an environmental sample, the resulting Cot curve will be an amalgam of several second-order subcurves or components. Each component represents DNA sequences of similar iteration within the genome (in the figure, the curve is composed of three components indicated by red, green, and blue, respectively). For each component, the program identifies its Cot¹/₂ and/or k, f, and KnCx.

CotQuestG

Download and Setup

CotQuestG requires Windows with .NET Framework 2.0 or higher and SAS[®] statistical software installed. Chances are you already have one of the required versions of .NET Framework installed if you use Windows XP with current updates or Windows Vista. Otherwise you can download it from Microsoft (<u>click here</u>). At many research institutions SAS is available for a small fee under an institution-wide site license. CotQuestG with all required SAS scripts can be downloaded from <u>http://www.mgel.msstate.edu/tools.htm</u> as a ZIP archive. Create a directory C:\CotQuestG and extract the archive to that directory. No additional installation is needed. Double click on the CotQuestG.exe icon (Figure 2) to start the program.

Fig. 2. The CotQuestG.exe icon

User Interface

Starting the program will bring up the Welcome window (Figure 3). From this window you can either choose to create an input file with Cot data or analyze your existing input file.

Fig. 3. The Welcome window

Creating a Data File

If you choose to create a new data file you will see the following window (Figure 4):

🖶 Create Data File				
Reassociation kin where each data p on the x axis and i on the y axis. In of For example:	etics data is typically displaye ooint represents the intersect ts corresponding percentage ther words, data consists of a	ed as a ion of a e/fractio series	two-dimensio a specific Cot v on of single-str of paired X au	nal graph value (in M∙s) vanded DNA nd Yvalues.
Cotvalues ssDN 0.0001 0.975 0.0005 0.976 0.001 0.974 0.005 0.975 0.01 0.976	A			
To generate a CotGr paste a data table int enter data pairs into t a data file.	aph data file, you can either to this worksheet or manually the worksheet and save it as	•	Cot-Value (null)	ssDNA (null)
<u>Manual Data Entry</u>		*		
Please use ssDNA fractions (e.g., 0.85) instead of percentages (e.g., 85). Use the Tab key to move to the next cell; mouse and arrow keys can also be used to move between cells in the table. Click on the Save As button to save the data to a file.				
Paste Data from Mer	nory			
 Copy the data from a spreadsheet or text file. Answer the questions below. Click the Paste button. Save the new file by clicking on the Save As button. 				
C Cot values come before (to the left of) Yes No their corresponding ssDNA values?				
C ssDNA val Yes No fractions (e percentage	ues are represented as s.g., 0.85) rather than as (e.g., 85)?			
Paste	Save As			

Fig. 4. Create Data File dialog window

The generation of a Cot data file (*.cot) is explained in the text of the "Create Data File" window. Once you have created your data file, close the "Create Data File" window. The Welcome window should still be open.

Analyzing a Dataset

To analyze a dataset press the Analyze Data button on the Welcome window. The following dialog window will be displayed (Figure 5):

E CotQuestG
Create / Open Output Folder
Input file with Cot data Find Create
Species/Sample
Genome Size bp 💌 Unknown? (If checked fixed lowest k won't be tested)
Cot points were generated using hydroxyapatite (HAP) chromatography S1 nuclease digestion
Cot Analysis Fitting Algorithm © Marquardt © Gauss-Newton
Permissible component overlap 0.5 (Overlaps exceeding this value are shown in red in the Cot Analysis report.)
Cot Analysis Outlier Detection

Fig. 5. Dialog window for collection of initial settings and algorithm selection.

Create/Open Output Folder: This button opens a folder browsing dialog window that lets you select an existing folder or create a new folder in which your results will be placed (Figure 6). To create a new folder, for example in C:\CotQuestG\Output\, press the "+" button by the Output folder (Figure 6, left frame), then press the 'Make New Folder' button and type in folder name. Select your new folder and press OK. Once a folder has been selected/created, the folder's path will be displayed to the right of the button (Figure 6, right frame).

Browse For Folder	<u>?×</u>	
My Computer J 31/2 Floppy (A:) How Installed (C)		
E Cocal Disk (C:)		歸 CotQuestG
🖂 🗁 Output		
 EColi Image: The second second		Create / Open Output Folder C:\CotQuestG\Output\EColi\Gauss
Sample Data	•	
Make New Folder OK Cance		

Fig. 6. Creating a new folder.

Input file with Cot data: Use the "Find" button to select an input Cot data file.

Species/Sample: Enter a descriptive name into this box. This text will be displayed in Cot analysis report.

Genome Size: Genome size (1C) can be specified by entering a value in this box. The genome size is used to create additional models by fixing the lowest k (see the original article for details). If the genome size is unknown or you do not want to generate fixed k models, check the 'Unknown?' checkbox.

Note: Genome size values in picograms (pg) can be converted into base pairs (bp) using the following formula: $bp = pg \cdot (0.978 \times 10^9 bp/pg)$.

Cot points were generated using: Select the appropriate option.

Cot Analysis Fitting Algorithm: Choose either Marquardt or Gauss-Newton (see research paper for details).

Permissible Component Overlap: The default value is 0.5. Values exceeding this constant will be shown in red (as warnings) in the resulting report. Fraction overlaps > 0.5 typically indicates that the data could be explained by a simpler model.

Cot Analysis: To start a Cot analysis, press the Cot Analysis button. The following window will appear (Figure 7):

	×
SAS Cot Analysis program will be loaded next.	
Click on the Submit button 🔸 in SAS to start it.	
After it completes open C:\CotQuest GUI\Output\ <your folder="" output="">\Report.htm.</your>	
Proceed	

Fig. 7. Window that opens after the Cot Analysis button is pressed

Once the Proceed button has been pressed, SAS will automatically open (assuming that it has been properly installed on your computer). A CotQuestG script customized based on your entries in the main dialog window (Figure 5) will be visible in the lower half of the screen (Figure 8).

Fig. 8. SAS with the CotQuestG script loaded

Click on the Submit button (Figure 9) to start the analysis.

×

Fig. 9. The SAS Submit button

The Cot analysis process is computationally intensive and will take 10-30 minutes on an average single-processor desktop computer. The script generates a series of output reports which are saved to the ReportFiles subdirectory in the output folder selected/created as described above. The output folder will also contain a file called **Report.htm**. This page provides a summary of the analysis, biological values traditionally produced in Cot analyses, links to all generated HTML output files, and detailed consolidated statistics for model selection (Figure 10). You can compare AICc, A-sq, W-sq, convergence, and fraction overlap percentages to make an educated decision about the nonlinear regression model that is likely to be the best description of your data (see scientific paper for details).

Once SAS has finished running, the SAS program can be closed. The CotQuestG program will still be open.

Outlier Detection

From the dialog window shown in Figure 5 one can also conduct a SAS-based detection of potential outliers. In short, press the Outlier Detection button and proceed by following the instructions in the next two dialog windows. The Outlier Detection step may be repeated more than once until no more outliers are detected. If you save your dataset without outliers to a new file make sure you select this new file in the main window using the [Find] button before repeating the Outlier Detection step or proceeding with an additional Cot Analysis.

Date: 06/16/2008 Species/Sample: Sorghum bicolor BTx623 Algorithm: marguardt Number of Cot points: 62 Input file: C:\CotQuestG\Sample Data\sorghum.cot AICc. A-sq, W-sq, Kinetic Complexity Residual Component Fraction k Cot1/2 Analysis Convergence -344.655, 0.97148860, 0.15991545, Reassociated 0.6537 9757434 0.0680 14.7059 Model 1 Plots | Data Converged Unreassociated 0.1225 224.184 Reassociated 0.5737 416491324 0.001398 715.2454 1.51459463. Model 1F 0.25986591 Plots | Data Converged Unreassociated 0 NLIN out Highly Repetitive 0.4607 1643045 0.2846 3.5137 415.658 0.69943367, 0.10762848, Single\Low 0.2963 113488491 0.00265 377.3585 Model 2 Plots | Data ot curve Converged NLIN output Unreassociated 0.0493 Fraction overlap. HR-SL: 0% Highly Repetitive 0.4998 2385035 0.2127 4.7015 -414.521, 0.55600124, 0.08845857, Single\Low 0.2695 195667024 0.001398 715.3076 Model 2F Plots | Data Cot curve Unreassociated 0.0323 Converged NLIN output Fraction overlap. HR-SL: 0% Highly Repetitive 0.1458 7.8907 0.1267 18755 -436.04. Moderately Repetitive 0.4142 3958691 0.1062 9.4162 0.48570032, 0.07194388, Model 3 Single\Low 0.238 163222973 0.00148 675.6757 Plots Data Cot curve Converged Upreassociated 0.0405 Fraction overlaps. HR-MR: 6.45%, MR-SL: 7.21% Highly Repetitive 0.1472 19350 7.7214 0.1295 -438.65, 0.46183585, 0.06839740, Moderately Repetitive 0.416 4075676 0.1036 9.6525 Model 3F 171272175 0.001398 715.3076 Single\Low 0.2359 Plots | Data Converged Unreassociated 0.0393 Fraction overlaps. HR-MR: 6.38%, MR-SL: 6.51% Very Highly Repetitive 0.1458 18755 7.8907 0.1267 0.0619 591605 0.1062 9.4162 Highly Repetitive 436.04, 3367086 0.48570864. Moderately Repetitive 0.3523 0.1062 9.4162 Model 4 0.07194535, Partially Converged Plots | Data Single\Low 0.238 163222973 0.00148 675.6757 NLIN outp 0.0405 Unreassociated Fraction overlaps. VHR-HR: 6.45%, HR-MR: 100%, MR-SL: 7.21% Model 4F The model is invalid

Other Data/Graphs: <u>Cot curves for Models 1-4</u> <u>Cot Curves for Models 1F-4F</u> <u>Cot Points</u> <u>Parameter Estimates for Models 1-4</u> <u>Parameter Estimates for Models 1F-4F</u> <u>Stats for Models 1-4</u> <u>Stats for Models 1-4</u>

Fig. 10. Report.htm provides a summary of the analysis, links to all program output files, and detailed model statistics

CotQuestU

Download and Setup

CotQuestU can be downloaded from <u>http://www.mgel.msstate.edu/tools.htm</u> as a ZIP archive. Create a directory C:\CotQuestU and extract the archive to that directory. No additional installation is needed.

The CotQuestU package consists of six SAS scripts and a few auxiliary files (see Table 1 for file descriptions). The scripts are platform independent and can run on any computer that has SAS statistical software installed. There are versions of SAS available for Windows, Macintosh, Linux, and UNIX. File paths in the provided SAS code and in this manual are in the Windows format. They should be modified to run the code on other operating systems. At many research institutions SAS is available for a small fee under an institution-wide site license.

To load a CotQuestU SAS script into SAS either double-click on a *.sas file which starts SAS and reads in the CotQuestU script or start SAS and open the appropriate *.sas program from the CotQuestU folder.

Directory and File List

Table 1. Essential directories and files included in the package and their functions.

Directory or File	Description
C:\CotQuestU\OutlierDetection\	Contains all outlier detection SAS scripts. Their HTML report (Outliers.htm)
	is generated in this directory.
C:\CotQuestU\OutlierDetection\	SAS script for outlier detection in Cot data with 3 or more components
OutlierDetection_m3f_ROUTf.sas	when genome size is known.
C:\CotQuestU\OutlierDetection\	SAS script for outlier detection in Cot data with 3 or more components
OutlierDetection_m3_ROUT.sas	when genome size is unknown or when Cot analysis will be performed with
	cot_analysis_k_not_fixed.sas and won't include additional models with the
	lowest <i>k</i> fixed.
C:\CotQuestU\OutlierDetection\	SAS script for outlier detection in Cot data with 2 or more components
OutlierDetection_m2f_ROUTf.sas	when genome size is known.
C:\CotQuestU\OutlierDetection\	SAS script for outlier detection in Cot data with 2 or more components,
OutlierDetection_m2_ROUT.sas	when genome size is unknown or when Cot analysis will be performed with
	cot analysis k not fixed sas and won't include additional models with the
	lowest <i>k</i> fixed.
C:\CotQuestU\OutlierDetection\	SAS script for outlier detection in potential one-component Cot data.
OneComponentOutlierDetection_ROUT.	
sas	
cot_analysis_Fixed_Lowest_k.sas	SAS script that generates one-, two-, three-, and four-component models
	and the corresponding models with fixed lowest <i>k</i> .
cot_analysis_k_not_fixed.sas	SAS script that generates one-, two-, three-, and four-component models.
one_component_cot_analysis.sas	SAS script that generates a one-component model and has an option to
	keep the sum of reassociated and non-reassociated components within
	100%. [Some one-component datasets have an optimal fit where f_1 + f_0 is
	slightly greater than 1].
C:\CotQuestU\ReportFiles\	Default storage area for GIF and HTML report files generated by
	cot_analysis_Fixed_Lowest_k.sas and cot_analysis_k_not_fixed.sas.
C:\CotQuestU\OneComponentReportFil	Default storage area for GIF and HTML report files generated by
es\	one_component_cot_analysis.sas.
C:\CotQuestU\Report.htm	Generated HTML file to view Cot analysis results produced by
	cot_analysis_Fixed_Lowest_k.sas or cot_analysis_k_not_fixed.sas.
C:\CotQuestU\OneComponentReport.ht	Generated HTML file to view Cot analysis results produced by
m	one_component_cot_analysis.sas.
C:\CotQuestU\out.txt	Auxiliary file used by SAS scripts.
C:\CotQuestU\Sample Data\	Contains sample files with Cot data in plain text format.
C:\CotQuestU\Output\	Contains sample Cot analysis reports.

Data Input Format

Data must be in a space-delimited standard text (ASCII) file with record delimiters (carriage returns), of the form

y1[space] x1[return]
y2 [space]x2[return]
etc.

or as it would actually look in a text file

y1 x1 y2 x2 ... yn xn

Note that for each Cot point the *y*-value (ssDNA) is listed first and the *x*-value (Cot) is listed second. The entire file consists of data; there are NO variable names in the first row. The program automatically assigns variable names. Sample input files are included in the Sample Data folder.

Required User Specifications

Once a CotQuestU is loaded into SAS a few settings must be adjusted by changing the code in the lower SAS window (e.g., Figure 8). For the CotQuestU SAS scripts, the user MUST set the data input file pathname, the organism name, and the Cot generation constant (1 for hydroxyapatite; 0.44 for S1 nuclease digestion – see the scientific paper for details). If the organism's genome size is known, this can be entered as well to allow fixing of the lowest k (this applies only to those scripts designed for use when genome size is known – see Table 1).

Example:

To enter the settings for an analysis of the bald cypress (*Taxodium distichum*) dataset using the script *cot_analysis_Fixed_Lowest_k.sas*, open *cot_analysis_Fixed_Lowest_k.sas* and modify the following lines of code at the beginning of the SAS file (SAS code is shown in blue; explanatory notes not actually in the SAS script are shown in red italics):

infile 'C:\CotQuestU\Sample Data\cypress	.cot'; location of input file
%let G = 9751000000;	genome size in base pairs
%let organism = Taxodium distichum;	name of species/sample
%let cgc = 1;	Cot generation constant (1 for HAP, 0.44 for S1 nucl.)
The user MAY also change fitting algorithm	n and permissible overlap:
%let alg = gauss;	gauss and marquardt are acceptable values
%let permis_fraction_overlap = 0.5;	0.5 is the default; can use any value between 0 and 1

For the outlier-detection programs, the same lines of code MUST be modified to specify the input file pathname and the organism genome size. The user may also change the FDR threshold (see Motulsky and Brown, 2006, BMC Bioinformatics, 7:123). %let Q = 0.01;

Running the Cot Analysis Programs

We will work through a typical example using the sorghum (*Sorghum bicolor*) dataset included in the archive in the sorghum.cot file.

(1) Open the main program (C:\CotQuestU\cot_analysis_Fixed_Lowest_k.sas) in SAS. The easiest way to do this is to double click on the cot_analysis_Fixed_Lowest_k.sas file.

(2) Enter the input file pathname (e.g., infile 'C:\CotQuestU\Sample Data\sorghum.cot') and the sorghum genome size (%let G = 730000000;). Change other settings if needed.

(3) Click the Submit button. It looks like this: . The CotQuest Cot analysis program is computationally intensive and will run for 10-30 minutes on an average single-processor desktop computer. It generates a long list of output reports in the Results panel. To facilitate easy results navigation, the most vital results are also saved to the ReportFiles subdirectory. The program also creates HTML pages in this subdirectory for organization and viewing of the generated image files. To view this essential program output open C:\CotQuestU\Report.htm. This page provides links to all generated HTML output and detailed consolidated model statistics for model selection (Figure 10). You can compare AICc, A-sq, W-sq, convergence, and fraction overlap percentages to make an educated decision about the model you want to select. The models that failed to stay in bounds are marked as invalid and their statistics are not reported. This page also includes links to the detailed non-linear regression (NLIN PROC) output. If it is hard to select the model based on the statistical values you can also compare the residual plots and Cot graphs using links from Report.htm.

(4) Every time the program executes, it will overwrite the contents of the ReportFiles subdirectory and Report.htm. To prevent this, copy the ReportFiles folder and the Report.htm page to a new folder. A few sample reports are stored in organism-specific folders in C:\CotQuestU\Output\.

Outlier Detection

For the outlier-detection programs, the input file pathname and the organism genome size must be entered in the loaded SAS script. The user may also change the FDR threshold (see Motulsky and Brown, 2006, BMC Bioinformatics, 7:123). The default is

%let Q = 0.01;